人脑解剖图像的专家解释是神经放射学的中心部分。已经提出了几种基于机器学习的技术来协助分析过程。但是,通常需要对ML模型进行培训以执行特定的任务,例如脑肿瘤分割或分类。相应的培训数据不仅需要费力的手动注释,而且人脑MRI中可以存在多种异常 - 甚至同时发生,这使得所有可能的异常情况都非常具有挑战性。因此,可能的解决方案是一种无监督的异常检测(UAD)系统,可以从健康受试者的未标记数据集中学习数据分布,然后应用以检测​​分布样本。然后,这种技术可用于检测异常 - 病变或异常,例如脑肿瘤,而无需明确训练该特定病理的模型。过去已经为此任务提出了几种基于变异的自动编码器(VAE)技术。即使它们在人为模拟的异常情况下表现良好,但其中许多在检测临床数据中的异常情况下表现较差。这项研究提出了“上下文编码” VAE(CEVAE)模型的紧凑版本,并结合了预处理和后处理步骤,创建了UAD管道(Strega)(Strega),该步骤对临床数据更强大,并显示其在检测到其检测方面的适用性脑MRI中的肿瘤等异常。 The proposed pipeline achieved a Dice score of 0.642$\pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$\pm$0.112 while detecting artificially induced anomalies, while the best performing baseline achieved 0.522$\pm$0.135 and 0.783$\ PM分别为0.111美元。
translated by 谷歌翻译
Mixup is a popular data augmentation technique based on creating new samples by linear interpolation between two given data samples, to improve both the generalization and robustness of the trained model. Knowledge distillation (KD), on the other hand, is widely used for model compression and transfer learning, which involves using a larger network's implicit knowledge to guide the learning of a smaller network. At first glance, these two techniques seem very different, however, we found that ``smoothness" is the connecting link between the two and is also a crucial attribute in understanding KD's interplay with mixup. Although many mixup variants and distillation methods have been proposed, much remains to be understood regarding the role of a mixup in knowledge distillation. In this paper, we present a detailed empirical study on various important dimensions of compatibility between mixup and knowledge distillation. We also scrutinize the behavior of the networks trained with a mixup in the light of knowledge distillation through extensive analysis, visualizations, and comprehensive experiments on image classification. Finally, based on our findings, we suggest improved strategies to guide the student network to enhance its effectiveness. Additionally, the findings of this study provide insightful suggestions to researchers and practitioners that commonly use techniques from KD. Our code is available at https://github.com/hchoi71/MIX-KD.
translated by 谷歌翻译
机器学习潜力是分子模拟的重要工具,但是由于缺乏高质量数据集来训练它们的发展,它们的开发阻碍了它们。我们描述了Spice数据集,这是一种新的量子化学数据集,用于训练与模拟与蛋白质相互作用的药物样的小分子相关的潜在。它包含超过110万个小分子,二聚体,二肽和溶剂化氨基酸的构象。它包括15个元素,带电和未充电的分子以及广泛的共价和非共价相互作用。它提供了在{\ omega} b97m-d3(bj)/def2-tzVPPD理论水平以及其他有用的数量(例如多极矩和键阶)上计算出的力和能量。我们在其上训练一组机器学习潜力,并证明它们可以在化学空间的广泛区域中实现化学精度。它可以作为创建可转移的,准备使用潜在功能用于分子模拟的宝贵资源。
translated by 谷歌翻译
自然界中多元化的生态学在许多物种中具有各种形式的群体行为。蝴蝶物种是随机飞行的突出物种之一,有点有见地,并将其转化为人造隐喻将导致巨大的可能性。本文认为一种这种隐喻称为蝴蝶交配优化(BMO)。在BMO中,BFLE遵循巡逻的交配现象,并同时捕获了多模式函数的所有局部优势。为了模仿该算法,设计了一个移动机器人(BFlyBot),以满足BMO算法中BFLE的功能。此外,多Bflybot群的设计旨在像蝴蝶本质上的作用,并遵循该算法的规则。实时实验是在多动物领域的BMO算法上进行的,并将信号源视为光源。实验结果表明,BMO算法适用于检测多个信号源,其运动的变化显着,即静态和动态。在静态信号源的情况下,随着BFlybot的初始位置的不同,收敛性在时间和平稳性方面受到影响。而具有不同阶梯尺寸的实验会导致它们在机器人的执行时间和速度方面的变化。在这项工作中,在动态环境中进行了实验,在该环境中,信号源在操纵和非操作场景中的运动。 Bflybot群能够检测到单个和多信号源,在两个固定点之间在两个固定点之间进行线性移动,以圆形,向上和向下运动。评估BMO现象,各种正在进行的和前瞻性的作品,例如中海船舶检测,讨论了空中搜索应用和地震预测。
translated by 谷歌翻译
原始出版物使用周期一致的对抗网络不成对图像到图像的翻译,这是该实施项目的灵感。研究人员开发了一种新的方法,用于使用原始研究中的未配对数据集进行图像到图像翻译。尽管PIX2PIX模型发现很好,但匹配的数据集经常不可用。因此,在没有配对数据的情况下,Cyclegan可以通过将图像转换为图像来解决此问题。为了减少图像之间的差异,他们实施了周期一致性损失。我用三个不同的数据集评估了Cyclegan,本文简要讨论了发现和结论。
translated by 谷歌翻译
独立组件分析是一种无监督的学习方法,用于从多元信号或数据矩阵计算独立组件(IC)。基于权重矩阵与多元数据矩阵的乘法进行评估。这项研究提出了一个新型的Memristor横杆阵列,用于实施ACY ICA和快速ICA,以用于盲源分离。数据输入以脉冲宽度调制电压的形式应用于横梁阵列,并且已实现的神经网络的重量存储在Memristor中。来自Memristor列的输出电荷用于计算重量更新,该重量更新是通过电压高于Memristor SET/RESET电压执行的。为了证明其潜在应用,采用了基于ICA架构的基于ICA架构的拟议的Memristor横杆阵列用于图像源分离问题。实验结果表明,所提出的方法非常有效地分离图像源,并且与常规ACY的基于软件的ACY实施相比,与结构相似性的百分比相比,结构相似性的百分比为67.27%,图像的对比度得到了改进。 ICA和快速ICA算法。
translated by 谷歌翻译
部署的ML模型的基本要求是从与培训不同的测试分布中汲取的数据概括。解决此问题的一个流行解决方案是,仅使用未标记的数据将预训练的模型调整为新的域。在本文中,我们关注该问题的挑战性变体,其中访问原始源数据受到限制。虽然完全测试时间适应(FTTA)和无监督的域适应性(UDA)密切相关,但由于大多数UDA方法需要访问源数据,因此UDA的进展不容易适用于TTA。因此,我们提出了一种新方法,即Cattan,它通过放松了通过新颖的深层子空间对准策略来放松访问整个源数据的需求,从而弥合了UDA和FTTA。通过为源数据存储的子空间基础设置的最小开销,Cattan在适应过程中可以在源数据和目标数据之间进行无监督的对齐。通过对多个2D和3D Vision基准测试(Imagenet-C,Office-31,OfficeHome,Domainnet,PointDa-10)和模型体系结构进行广泛的实验评估,我们在FTTA性能方面表现出显着提高。此外,即使使用固有健壮的模型,预训练的VIT表示以及目标域中的样本可用性低,我们也会对对齐目标的实用性做出许多关键发现。
translated by 谷歌翻译
我们提出了两种方法来确定分层三星级系统的动力稳定性。首先是对Mardling&Aarseth(2001)的半分析稳定性标准的改进,我们引入了对内轨道偏心率的依赖性,并改善了对相互轨道倾斜的依赖。第二个涉及机器学习方法,我们使用多层感知器(MLP)将三星级系统分类为“稳定”和“不稳定”。为了实现这一目标,我们使用N-Body Code MSTAR生成了10^6个层次三元组的大型培训数据集。我们的两种方法的表现都比原始的Mardling&Aarseth(2001)稳定性标准更好,MLP模型表现最好。改进的稳定性公式和机器学习模型的总体分类精度分别为93%和95%。我们的MLP模型可以准确地预测所研究的参数范围内的任何层次三星级系统的稳定性,几乎不需要计算。
translated by 谷歌翻译
感知视频质量评估(VQA)是许多流和视频共享平台的组成部分。在这里,我们以自我监督的方式考虑学习具有感知相关的视频质量表示的问题。失真类型的识别和降解水平确定被用作辅助任务,以训练一个深度学习模型,该模型包含深度卷积神经网络(CNN),该模型提取了空间特征,以及捕获时间信息的复发单元。该模型是使用对比度损失训练的,因此我们将此训练框架和结果模型称为对比度质量估计器(Conviqt)。在测试过程中,训练有素的模型的权重被冷冻,并且线性回归器将学习的功能映射到No-Reference(NR)设置中的质量得分。我们通过分析模型预测与地面真相质量评级之间的相关性,并与最先进的NR-VQA模型相比,我们对多个VQA数据库进行了全面评估,并实现竞争性能在这些数据库上进行了培训。我们的消融实验表明,学到的表示形式非常强大,并且在合成和现实的扭曲中很好地概括了。我们的结果表明,可以使用自我监督的学习来获得具有感知轴承的引人注目的表示。这项工作中使用的实现已在https://github.com/pavancm/conviqt上提供。
translated by 谷歌翻译
用于移动设备的有效神经网络骨干通常针对诸如FLOPS或参数计数之类的指标进行优化。但是,这些指标在移动设备上部署时可能与网络的延迟不太相关。因此,我们通过在移动设备上部署多个移动友好网络来对不同指标进行广泛的分析。我们在最近有效的神经网络中识别和分析建筑和优化瓶颈,并提供减轻这些瓶颈的方法。为此,我们设计了一个高效的骨干莫比尼蛋白,在iPhone12上的推理时间低于1毫秒,ImageNet上的Top-1精度为75.9%。我们表明,Mobileone在高效体系结构中实现了最先进的性能,同时在移动设备上的速度更快。我们的最佳模型在38倍的速度中,在Imagenet上的性能与移动形式相似。与在类似延迟时,我们的模型在ImageNet上获得了2.3%的TOP-1精度。此外,我们表明我们的模型概括为多个任务 - 图像分类,对象检测和语义分割,与在移动设备上部署时现有的有效体系结构相比,延迟和准确性的显着提高。
translated by 谷歌翻译